Preparation of Two Copper-containing Molybdenum-Tungsten Cuboidal Clusters†

Jane E. Varey*

Department of Chemistry, Bedson Building, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK

Two new cuboidal clusters, containing copper, have been developed and studied (using UV-VIS spectroscopy and cyclic voltammetry), thus completing the series $M_nM'_{3-n}CuS_4(aq)^{y+}$, where M = Mo and M' = W.

The incorporation of elements into $[Mo_3S_4(H_2O)_9]^{4+}$ and $[W_3S_4(H_2O)_9]^{4+}$ has been well studied.¹⁻⁸ In particular, copper has been incorporated into both the $Mo^{4,9}$ and the W analogues.^{10 -12} The clusters produced have cores of ${Mo_3CuS_4^{3+}}_2$ and $W_3CuS_4^{5+}$ by reaction with copper metal.^{11,12} A $\text{Mo}_3\text{CuS}_4^{5+}$ core can also be generated using $Cu(I).¹²$

Two mixed-metal clusters, $[Mo_2WS_4(H_2O)_9]^{4+}$ and $[MoW₂S₄(H₂O)₉]⁴⁺$, have been prepared.¹³ The incorporation of copper into these clusters has been attempted here. Very low yields of $[MoW_2S_4(H_2O)_9]^{4+}$ have made studies difficult.

Experimental

Preparation of $[Mo_2WS_4(H_2O)_9]^{4+}$ and $[MoW_2S_4(H_2O)_9]^{4+}$. These compounds were prepared as previously.¹⁴ The peaks and extinction coefficients obtained by Shibahara¹³ are used with those in the 300–400 nm region obtained by extrapolation.

Cyclic Voltammetry.- Cyclic voltammetry studies were performed in 2.00 M HClO_4 at 25.0 °C . An Ag/AgCl reference electrode was used in conjunction with a Pt working electrode and a Pt wire auxiliary electrode.

Results

Both mixed-metal species (ca. 1 mM; 2.00 M $HClO₄$) were reacted with copper metal under N_2 for 3-4 h to enable 100% conversion. ϵ values (Table 1) were determined by comparison with the starting material. A colour change of green to yellow-orange (Fig. 1) was obtained with $[Mo_2WS_4(H_2O)_9]^{4+}$; with grey to yellow-green (Fig. 2) for $[MoW_2S_4(H_2O)_9]^{4+}.$

The charge on the derivatives was determined by oxidation to the starting material and $Cu(aq)^{2+}$.

The results obtained for $Mo_2WCu\overline{S}_4^{x+}$ were 1:1 for $[Fe³⁺]: [Mo₂WCuS₄^{x+}].$ Determination of the amount of iron(II) ions present in the solution yielded a value of 0.969 ± 0.050 :1 for the ratio $[Fe^{2+}]$:[Mo₂WCuS₄^{x+}], eqn. (1). For oxidation by $[Co(dipic)₂]$ ⁻ a ratio, of 1.05 ± 0.05 :1 was obtained for $\left[\text{Co}^{\text{III}}\right]:\left[\text{Mo}_{2}\text{WCuS}_{4}\right]^{x+}$ consistent with a 5+ charge, eqn. (2).

$$
Mo_2WCuS_4^{5+} + Fe^{3+} \rightarrow Mo_2WS_4^{4+} + Fe^{2+} + Cu^{2+}
$$
 (1)

$$
Mo_2WCuS_4^{5+} + Co^{III} \rightarrow Mo_2WS_4^{4+} + Co^{II} + Cu^{2+}
$$
 (2)

Studies on the $Mow_2CuS_4^{x+}$ cluster indicated that a ratio of 2:1 for $[Fe^{3+}]$:[MoW₂CuS₄^{x+}] was needed indicating a charge of $4+$, eqn. (3).

$$
Mow_2CuS_4^{4+} + 2Fe^3 \rightarrow Mow_2S_4^{4+} + 2Fe^{2+} + Cu^{2+}
$$
 (3)

Fig. 1 UV-VIS spectra of $[Mo_2WS_4(H_2O)_9]^{4+}$ (\cdots) and its copper derivative $(-)$, 2.00 M HClO₄, 25.0 °C

Stability.—The cluster assigned as $Mo_2WCuS_4^{5+}$ was stable for a minimum of 10 min under nitrogen at room temperature. In air, decomposition occurred to the starting material. Beer's law was obeyed at 340 and 460 nm $(25.0 °C)$.

The derivative $M_0W_2CuS_4^{4+}$, was found to be stable under nitrogen for several hours at room temperature. The lifetime increased in the presence of the metal, at $4.0\,^{\circ}\text{C}$. Beer's law was obeyed at 410 nm at 25 °C .

Cyclic Voltammetry.— $Mo_2WCuS_4^{5+}$. When a solution of $Mo_2WCuS_4^{5+}$ (1 mm) was reduced in 2.00 m HClO₄, a transient species appeared to occur. On scanning from 0.9 to 0.0 V at 50 mV s^{-1} , a non-reversible reduction wave was observed at ca. 0.5 V (0.72 V vs. SHE), Fig. 3a, consistent with the reduction of the $5+$ species to $4+$, and the latter then decomposing, eqn. (4)

$$
Mo_2WCuS_4^{5+} + e^- \rightarrow [Mo_2WCuS_4^{4+}]^{\ddagger}
$$

\n
$$
[Mo_2WCuS_4^{4+}]^{\ddagger} \rightarrow Mo_2WS_4^{4+} + Cu
$$
 (4)

Fig. 2 UV-VIS spectra of $[Mow_2S_4(H_2O)_9]^{4+}$ (\cdots) and its copper derivative $(-)$, 2.00 M HClO₄, 25.0 °C

J. Chem. Research (S), 1998, 200-201†

^{*}Present address: Division of Chemical and Biotechnological Sciences, University of Teesside, Middlesbrough TS1 3BA, UK (e-mail: j.e.Varey@tees.ac.uk).

[†]This is a Short Paper as defined in the Instructions for Authors, Section 5.0 [see *J. Chem. Research* (S) *, 1998*, Issue 1]; there is therefore no corresponding material in J. Chem. Research (M).

Table 1 Values of λ_{max} and ϵ in 2.00 m HClO₄, 25 °C

Cluster	$\lambda_{\text{max}}/$ nm (ϵ /l mol ⁻¹ cm ⁻¹ per cluster)			
$Mo_2WS_4(aq)^{4+}$ $Mo_2WCuS_4(aq)^{5+}$ $MoW2S4(aq)4+$ $M_0W_2CuS_4(aq)^{4+}$	$310(sh)$ (3176) 325 (5420) 298 (4527)	340 (4390) $340(sh)$ (2616) 410 (1927)	490(sh) (298) 460(sh) (1108) 490 (320) $500(sh)$ (874)	590 (322) $610(sh)$ (263) 570 (363)

If the scan rate was decreased to 5 mV s^{-1} , a second process was observed at 0.12 V (0.34 V vs. SHE), presumably the oxidation of one end-product (Fig. 3b). If the scanning was then begun at -0.3 V, *i.e.* beginning with the reduced form of the copper derivative, this oxidation can be seen to be non-reversible (Fig. 3c). The potential and relative height of this oxidation wave (ca. two-fold greater than the reduction wave) indicates possibly a two-electron oxidation, perhaps that of Cu⁰ to Cu^{II} (Cu²⁺/Cu⁰ = 0.34 V), the non-reversibility being due to the dispersion into the bulk solution of the Cu^{II} so reducing the concentration at the electrode to negligible. This would indicate a lifetime of 14-92s for the transient $4 +$ species (based on various scan rates) under air-free conditions.

 $MoW_2CuS_4^{4+}$. When a solution of MoW₂CuS₄⁴⁺ $($ < 1 mm) was oxidised and then reduced by scanning from 0 to 0.65 V and back, a quasi-reversible process was observed with E_{pa} (= E_{ox}) = 0.393 V and E_{pc} (= E_{red}) = 0.279 V. This process has been assigned to a one-electron oxidation of the $4+$ species to a $5+$ core, and its subsequent reduction. Low concentrations made resolution difficult.

Fig. 3 Cyclic voltammograms obtained for $Mo_2WCuS_4(aq)^{5+}$ (1 mm) in 2.00 M HClO₄, at room temperature $(ca. 18 \degree C)$: (a) on scanning from 0.9 to 0.0 V (and back) at 50 mV s¹ ; (b) on scanning from 0.9 to 0.0 V (and back) at 5 mV s¹ (b) on scanning from 0.9 to 0.0 V (and back) at 5 mV s^{-1} ;
(c) on scanning from -0.3 to 0.7 V (and back) at 5 mV s^{-1}

Discussion

Only copper and tin have been incorporated into both $[M_0S_4(H_2O)_9]^{4+1,4}$ and $[W_3S_4(H_2O)_9]^{4+12}$ clusters forming $({[{Mo_3CuS_4}]_2(H_2O)_{18}}^{8+\frac{1}{4}}$ and $[{W_3CuS_4(H_2O)_{10}}^{5+\frac{12}{4}}$ with copper metal. It has been shown that $Cu⁺$ can form M_{03} CuS₄(aq)^{5+ 12} Here new complexes have been prepared completing the first cuboidal cluster series.

A 5+ core was obtained with $[Mo_2WS_4(H_2O)_9]^{4+}$ and a $4+$ core (or possibly $8+$ if double cuboidal) with $\left[\text{MoW}_{2}\text{S}_{4}(\text{H}_{2}\text{O})_{9}\right]^{4+}$. This anomalous result indicates that the heterometal in the minority in the trinuclear cluster appears to control the charge on the cuboidal core. The compounds do follow a general colour pattern: $Mo₃CuS₄(aq)$, red-orange; $Mo₂CuS₄(aq)$, orange-yellow; $Mow_2CuS_4(aq)$, yellow-green; $W_3CuS_4(aq)$, green.

By comparison, $Mow_2CuS_4(aq)^{4+}$ would be expected to be an edge-shared double cuboidal structure $({Mo_3CuS_4(aq)^{4}}_2^2)$, whilst $Mo_2WCuS_4(aq)^{5+}$ would be expected to be a single cuboidal cluster.

The electrochemical studies indicate that the reduced 4 species of $Mo_2WCuS_4(aq)^{5+}$ does not appear stable, whilst the oxidised '5+' species obtained from $M_0W_2CuS_4(aq)^{4+}$ does. This indicates that a similar chemistry may occur in the latter as in $Mo_3CuS_4(aq)^{4+}$ when a 5+ core can be isolated in the oxidation reaction. The stabilisation of this new $5+$ species is, however, more likely to be due to the species being '{MoW₂CuS₄}₂(aq)⁹⁺' rather than the monomeric $5+$ cuboidal cluster. A double cuboidal structure would be expected to tolerate the loss of an electron better than a single cuboidal species.

I thank the SERC and Professor A. G. Sykes for enabling this work to be undertaken.

Received, 30th July 1997; Accepted, 4th December 1997 Paper E/7/05515C

References

- 1 H. Akashi and T. Shibahara, Inorg. Chem., 1989, 28, 2906.
- 2 J. E. Varey and A. G. Sykes, Polyhedron, 1996, 15, 1887.
- 3 T. Shibahara, H. Akashi, M. Yamasaki and K. Hashimoto, Chem. Lett., 1991, 689.
- 4 T. Shibahara, H. Akashi and H. Kuroya, J. Am. Chem. Soc., 1988, 110, 3313.
- 5 T. Shibahara, K. Hashimoto and G. Sakane, J. Inorg. Biochem., 1991, 43, 280.
- 6 T. Murata, H. Gao, Y. Mizobe, F. Nakano, S. Motomura, T. Tanase, S. Yano and M. Hidai, J. Am. Chem. Soc., 1992, 114, 8287.
- 7 T. Shyibahara and H. Kuroya, J. Coord. Chem., 1988, 18, 233.
- 8 T. Shibahara, H. Akashi and H. Kuroya, J. Am. Chem. Soc., 1986, 108, 1342.
- 9 X. Wu, S. Lu, Q. Wu and J. Lu, Inorg. Chim. Acta, 1987, 133, 39.
- 10 H. Zhan, Y. Zheng, X. Wu and J. Lu, Inorg. Chim. Acta, 1989, 156, 277.
- 11 M. Nasreldin, Y. J. Li, F. E. Mabbs and A. G. Sykes, Inorg. Chem., 1994, 33, 4283.
- 12 M. Nasreldin, C. A. Routledge and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1994, 2809.
- 13 T. Shibahara and M. Yamasaki, Inorg. Chem., 1991, 30, 1687.
- 14 J. E. Varey and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1993, 3293.